

Class QZ 20

1) Solve by Completing the Square: puse S.R.M.

$$x^2 + 14x + 53 = 0$$

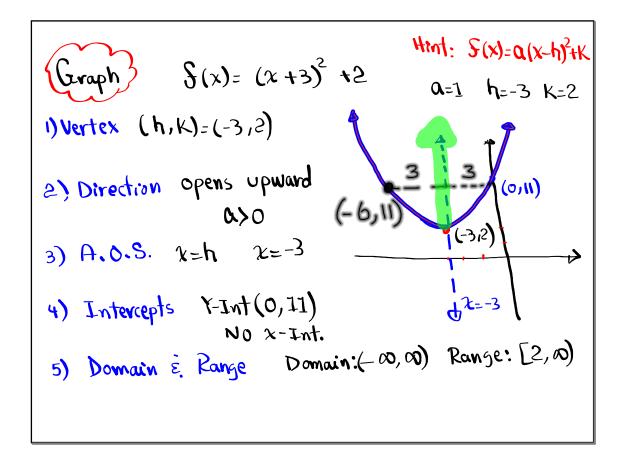
LC:1

 $x^2 + 14x + 7^2 = -53 + 7^2$

even

 $\frac{1}{2}(14) = 7$
 $x + 7^2 = 4$

2) Discuss the type of Solutions Sor


 $3x^2 = 4x + 10 = 0$
 $3x = 4x +$

Solve
$$x^4 - 5x^2 - 36 = 0$$
 by making Proper Subs.
Notice $x^4 = (x^2)^2$
 $x^4 - 5x^2 - 36 = 0 \Rightarrow (x^2) - 5x^2 - 36 = 0$
Let $u = x^2 \Rightarrow u^2 - 5u - 36 = 0$
 $u = 9$ $u = -4$ $(u - 9)(u + 4) = 0$
 $x^2 = 9$ $x^2 = -4$ $u - 9 = 0$ $u + 4 = 0$
 $x = \pm \sqrt{9}$ $x = \pm \sqrt{-4}$ $x = \pm \sqrt{-4}$

Sind a quadratic equation in
$$0x^2 + bx + c = 0$$

Som with $2 \pm 3i$ as Solutions.
 $x = 2 + 3i$ $x = 2 - 3i$
 $x - 2 - 3i = 0$ $x - 2 + 3i = 0$

$$(x - 2)(x - 2)$$
 Conjugates $\rightarrow (a - b)(a + b) = a^2 - b^2$

$$(x - 2)^2 - (3i)^2 = 0$$

$$x^2 - 4x + 4 - 9i^2 = 0$$

$$x^2 - 4x + 13 = 0$$

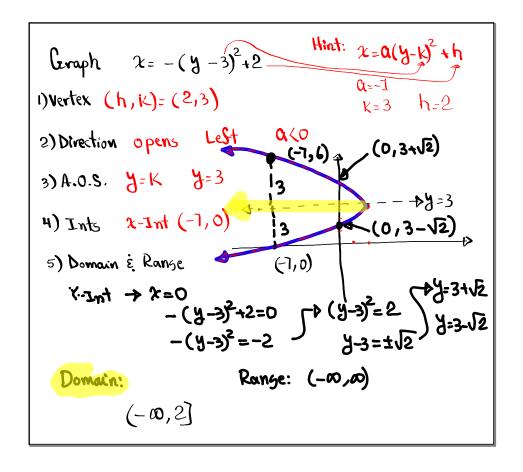
Graph
$$S(x) = \frac{1}{2} x^2 + 2x$$

Hint: $S(x) = \alpha x^2 + bx + C$
 $h = -\frac{b}{2a}$, $k = S(h)$

1) Vertex (212)

 $a = -\frac{1}{2}$ $b = 2$ $c = 0$

2) Direction opens downward $a(0)$ $h = -\frac{b}{2a} = \frac{-2}{2(-\frac{1}{2})} = -\frac{2}{-1} = 2$


3) A.O.S. $x = h$ $x = 2$ $k = S(2) = -\frac{1}{2}(2)^2 + 2(2)$

4) Intercepts Y-Int (0,0)

 $x - Int (0,0) = (4,0)$

5) Domain $E = Range$

Domain: $(-\infty, \infty)$, Range: $(-\infty, 2)$

Graph
$$x = y^2 - 6y + 9$$

1) Vertex (013)

1) Vertex (013)

1) Direction opens Right a>0

1) A.O.S. $y = k$ $y = 3$

1) Ints $x = 1$ $y = 1$

Class QZ 21

1) Sind a quadratic equation in the form of $ax^2 + bx + c=0$ with Solution $-4 \pm 2\dot{l}$.

2) what is Vertex of $5(x) = -2x^2 - 8x$?

$$h = \frac{-b}{2a} = \frac{-(-8)}{2(-2)} = \frac{8}{-4} = -2$$
 $S(x) = ax^2 + bx + C$
 $a = -2$
 $b = -8$
 $C = 0$

 $K=S(h)=-2(-2)^2-8(-2)=-8116=8$

Vertex (-2,8)

Pomain

S(x)

Pomain

F-inverse of
$$\chi$$

How to Sind $S^{-1}(x)$:

Replace $S(x)$ with Y .

Pomain

F-inverse of χ

Ext. $S(x) = 3x - 2$

1) Replace $S(x)$ with Y .

 $S(x) = 3x - 2$

2) Switch $S(x) = 3x - 2$

2) Switch $S(x) = 3x - 2$

3) Solve Sor $S(x) = 3x - 2$

4) Replace $S(x) = 3x - 2$

The symmetry $S(x) = 3x - 2$

The sym

Given
$$S(x) = 2x + 5$$

() find $S(-1) = 2(-1) + 5 = -2 + 5 = 3$
 $S(x) = 2x + 5$
 $S(x) =$

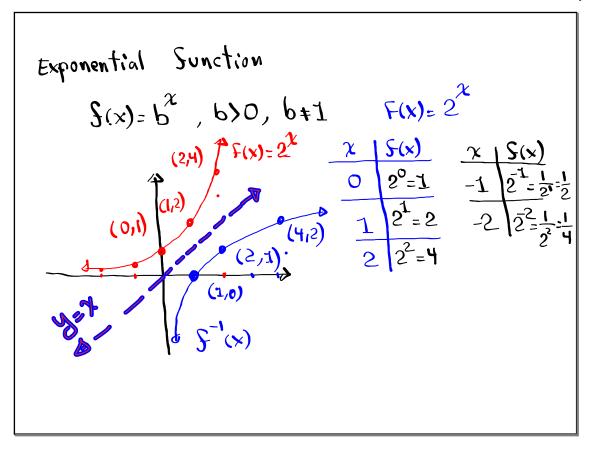
$$\int_{(x)} (x) = \sqrt{x-2}$$
1) Sind $\int_{(2)} (2) \text{ and } \int_{(11)} (11) = \sqrt{11-2} = \sqrt{9} = 3$

$$\int_{(2)} (2) = \sqrt{2-2} = \sqrt{0} = 0$$

$$\int_{(11)} (11) = 3$$
2) Sind $\int_{(x)} (x)$

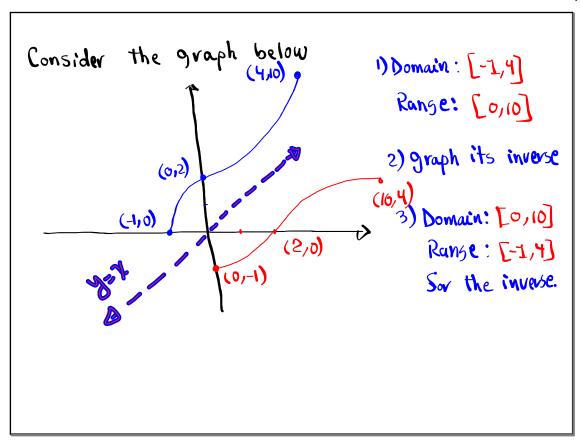
$$\int_{(x)} (x) = \sqrt{x-2}$$

$$\int_{(x)} (x) = \sqrt{$$


$$S(x) = \sqrt{2} + 1$$
1) Sind $S(-1) \stackrel{?}{=} 5(15)$

$$S(-1) = \sqrt{-1} + 1 = \sqrt{0} = 0$$

$$S(15) = \sqrt{15} + 1 = \sqrt{16} = 4$$


$$S(15) = 4$$

$$S$$

$$\int (x) = 3^{2}$$
i) Complete the tables below
$$\frac{x}{0} = \frac{|S(x)|}{|S(x)|} = \frac{x}{|S(x)|}$$

$$\frac{|S(x)|}{|S(x)|} = \frac{|S(x)|}{|S(x)|}$$

